### The webinar will begin at 10:00 a.m. MST



# RECLANIATION Managing Water in the West

### **Corrosion Mitigation of Gates**

**Jessica Torrey, PhD Materials Engineer- Corrosion Group** TSC- Materials Engineering Research Laboratory (MERL) Denver, CO





U.S. Department of the Interior **Bureau of Reclamation** 

### **Today's Topic: Gates**

- Review of Corrosion, Coatings, and Cathodic Protection
- Why Protect Submerged Structures?
- CP System Components
- Typical Gate Protection Design
- CP System Components
- Installation Overview
- Testing and Inspection Guidelines
- MICA and Corrosion Database Research

# Review of Corrosion and Cathodic Protection (CP)

#### **The Corrosion Reaction**

ex. oxidation, "rusting," electroplating, anodizing

## Electrochemical Reaction Between a Metal and an Electrolyte

ex. steel, copper, aluminum

ex. soil, water

# AERATED WATER or CONDUCTIVE SOIL $Fe^{2+} + 2OH^{-} \Rightarrow Fe(OH)_{2}$ Cathode $e^{-} \quad anode$ $Fe^{0} \Rightarrow Fe^{2+} + 2e^{-}$ IRON OR STEEL PIPE WALL

#### Four Required Components for Corrosion:

- 1. Anode (Corrodes)
- 2. Cathode (Protected)
- 3. Electrolyte (Usually Soil or Water)
- 4. Metallic Return Path (ex. Pipe)

#### **Forms of Corrosion**



#### **Dealing with Corrosion:**

- Create barrier between metal and electrolyte- Coating
- Eliminate potential differences on a structure's surface-Cathodic Protection
- Avoid use of dissimilar metalsex. mild steel gate with stainless steel guides
- Eliminate crevices- ex. no skip welding!
- Prevent standing water- ex. install drain holes

### **Protective Coatings**



- "The total annual U.S. cost for organic and metallic protective coatings is \$108.6 billion. 50% of all corrosion costs are preventable, and approximately 85% of these are in the area of coatings." -NACE website, 2014
- Protective coatings (including paint) are the primary means employed by Reclamation to control corrosion.
  - Coating acts as a barrier between the metal and the water to electrically isolate the metal



- Examples of Coatings for Immersion:
  - Epoxies & Coal Tar Epoxies
  - Moisture Cured Polyurethanes and Siloxanes
  - Galvanized coating

#### Cathodic Protection

- Current flows through Electrolyte from Anode to Structure
  - Polarizes structure to eliminate potential differences between anodic and cathodic areas on structure surface
  - Corrosion rate ceases or is greatly reduced
- Electrons are provided from source outside the structure
  - Via a more active metal to be sacrificed- galvanic anode CP
  - Via a rectifier- impressed current CP
- CP works with coating to protect structure at holidays and prevent undercutting of coating
- The most effective corrosion protection system for buried and submerged structures involves a good bonded coating and cathodic protection.



### **Galvanic Anode CP System**



- Also known as Sacrificial **Anode Cathodic Protection**
- This system provides a cathodic protection current by galvanic corrosion or by sacrificing one material to prevent corrosion of the other material

#### **Features:**

- Low current requirements
- Typically protect smaller surface areas
- No external power needed
- Low maintenance







 Both the structure and the anode must be in contact with the electrolyte (water)

#### **Anodes:**

- Soil and Fresh Water- Magnesium and Zinc
- Brackish Water- Aluminum and Zinc

### Impressed Current CP System



#### **Features:**

- High flow of water
- High current requirements
- Can handle large or poorly coated structures

Mixed Metal Oxide Disk Anode



- This system provides a cathodic protection current from an external power source
- A direct current power source forces current to discharge from anodes, through the electrolyte, an onto the structure to be protected
- Both the structure and the anode must be in contact with the electrolyte

#### **Graphite Anodes**



#### **Anodes:**

- Graphite, High-Si Cast Iron, Mixed Metal Oxide, Platinum
- Anodes Normally Connected Through Calibrated Shunts in Junction Box

# Why Protect Submerged Structures?

### **Corrosion Management Programs**

#### **Economic Benefits**



The most effective corrosion protection system for submerged structures involves a good bonded coating and cathodic protection.

- Coatings are the primary corrosion protection for gates, but today's epoxy coating systems do not last as long as the vinyl systems used in the past
- The costs for coating repairs or full recoating are constantly increasing
- Cathodic protection will help extend the life of the coating and maximize time between recoats
- The right corrosion mitigation system is a small up-front investment that will reduce long-term O&M costs on submerged structures (gates) and extend their useful lifetime.

#### Protected vs. Unprotected





- ICCP system using surface mounted mixed-metal oxide anodes
- Upstream side was recoated in ~1984one of the first applications of epoxy based coating system; CP applied at that time
- Photos 10 years after application.
   Gates have still not required recoating now 30 years later.



### **CP System Components**

### Anodes

#### **Magnesium Anodes**



- Mg- GA, fresh water, lightweight
- Zn- GA, fresh or brackish water
- MMO- IC, all waters, often used as low profile disk anodes on gates
- PT- IC, all waters, high current density
- Also- Aluminum, Graphite, High-Si Cast Iron

#### **Mixed Metal Oxide Anode**



#### **Zinc Anodes**





Platinized wire anode in slotted PVC tube for submersion

### Components



th th th th

Shunt

**Busbar** 



**HMWPE Cu Cable** 



Variable Resistor



Conduit and Mounting Hardware





Dielectric Shield Material and Coating Repair



(O) m

**Junction Box** 



**Rectifier** 

# Typical CP System Design for Gates- New and Retrofit

### **General Design Considerations**

- Cathodic Protection systems are designed for a minimum 20 year service life
- Take into consideration ease of maintenance and replacement of anodes- for example we try to use GACP where possible
- Try to provide uniformity of design across a site with multiple gates

#### Factors affecting design:

- -Size of structure- anodes must distribute current to entire submerged portion
- -Material, geometry, and weight of anode
- -Geometry of gate and guide structure- for example, some gates have minimal clearance between gate and guide and would do better with ribbon anodes or other low-profile designs
- -Design of gate- structural components can produce shielding of current, cellular designs will require drain holes
- -Operation of gate- what is the variation in water level, storage plan, anticipated availability for inspections and maintenance

#### Flush Mounted Anodes

- ICCP only
- Low profile anode mounting
- Require drilling through gate
- Will have cables and attachments on back side running to junction box/rectifier
- Must have good seal between anode and gate skin plate to prevent leakage of water/crevice corrosion
- As with all ICCP systems, anode will not visibly deplete, but performance will diminish over time and must be monitored







#### **Surface Mounted**



- GACP only
- Dielectric shield needed for Mg anodes- not for Zn
- Tape wrap at bracket to prevent anode consumption and mechanical instability
- Ensure good metallurgical/mechanical bond of core to gate
- Larger profile of anodes means tight tolerances should be considered for each site, as well as occurrences of turbulence and debris
- Profile of gate (curvature) and variable water level dictate horizontal vs vertical orientation of anode







### **Compartment Mounted**

- Current Shielding- in complex gate structure, each compartment needs an anode, support beams can shield current and limit protection
- Need to know operation conditions- eg low clearance for pocket-style guides, etc.
- DRAIN HOLES!! Avoid standing water when gate is in storage- anodes will be out of water and cannot protect structure



### Other Types of Anode Attachment



ICCP Hanging Anodes, Remote, Vertical

> GACP, Direct Mounted Stub-type





GACP, Hull Mounted

GACP Surface Mounted, Offset, Vertical



### **Hot Spot Repair**



#### **Nimbus Dam Radial Gates**

- Hoist rope assemblies had galvanized steel, stainless steel, and mild steel in contact
- Moving joints stripped coating and exposed bare metal
- Anodes were attached to each assembly to protect hot spot from corrosion
- Dielectric tape was applied to coating repairs over welds to prevent cathodic disbondment







### **Guidelines and Specifications**

Reclamation Corrosion staff follows the guidelines and criteria in NACE Standard SP0169 "Control of External Corrosion on Underground or Submerged Metallic Piping Systems"

#### Other References:

- Your USBR-TSC-MERL Corrosion Team
- Cathodic Protection Survey Procedures, 2<sup>nd</sup> ed., NACE International, 2012
- NACE RP0285 "Corrosion Control of Underground Storage Tank Systems by Cathodic Protection"
- NACE SP0388 "Impressed Current Cathodic Protection of Internal Submerged Surfaces of Steel Water Storage Tanks"
- NACE RP0196 "Galvanic Anode Cathodic Protection of Internal Submerged Surfaces of Steel Water Storage Tanks"

#### **Installation Overview**

### **Installation Steps**



- Step 1: Dielectric Shield Material (Mg anodes and ICCP systems)
  - Mark anode locations
  - Prepare surface for coating- could mean completely removing coating or roughening existing coating
  - Apply dielectric shield material (ex. capastic coating/ bituminous coating)
    - a high strength, high dielectric strength, high build epoxy
    - minimum thickness 75 mils
  - Apply top-coat, if required
  - NOTE- shield material is often built in to ICCP flush-mounted anodes
  - NOTE- Zinc anodes do not require dielectric shield due to lower output

### **Installation Steps**



#### Step 2: Prepare to Mount Anodes

- Remove coating beneath bracket weld studs and anode core weld
- Weld bracket studs to skin plate
- Repair weld area with bituminous coating
- Apply dielectric tape wrap or sleeve to area of anode beneath bracket

### **Installation Steps**



#### Step 3: Mount Anodes

- Exothermically weld each end of anode core material or each mounting tab to skin plate
- Secure U-brackets over anode
- Test electrical continuity between gate and anode
- Cover welds and exposed skin plate with bituminous coating, ~20 mils

### Things to Avoid



**Palo Verde Diversion** Dam Radial Gates, 2013



Fort Randall Dam **Emergency Gate,** 2005







# Testing and Inspection Guidelines

### **Testing Submerged CP Systems**

- Structures with a submerged GACP system should be inspected whenever structure is removed for maintenance
  - What is the condition of the coating?
  - What is condition of anodes?
  - Are brackets still providing sufficient mechanical support?
  - Are metallurgical bonds still intact?



Dielectric tape wrap

### **Testing Submerged CP Systems**

#### On a submerged ICCP system

- Perform same inspections as for galvanic system
- Check rectifier
- Test current at each anode in junction box and balance output using variable resistor
- Test V<sub>OFF</sub> of structure
  - Install current interrupter
  - Reference electrode goes in water, close to structure
  - May use weighted submersible container or rigid PVC pipe to hold reference electrode securely, prevent loss of electrode, and position electrode at test depth





### Record Keeping

- Testing Records should include:
  - General:
    - Tester's Name
    - Date and Time of Test
    - Location of Test Site (GPS)

- Measurement Data:
  - Type of Measurement (V<sub>ON</sub>, V<sub>OFF</sub>)
  - Value/Polarity (+/-)/Units (V, mV, mA, A, etc)
  - Type of reference electrode (CSE)

- Other Useful Information:
  - Drawings, photos, maps of site
  - Sketches or photos of rectifier/JB/TS
  - General inspection description
  - Description of problems or troubleshooting work
- Test rectifiers monthly, rest of system should be checked annually
- \* Good historical record keeping is the best way to determine health of a CP system.

# Research Project: MICA and Corrosion Database





#### **USACE/USBR Collaborations**

- Database of Corrosion Mitigation Installations aims to:
  - Catalogue types of protected structures and their locations
  - Document corrosion mitigation successes and failures
  - Share information between organizations





- Corrosion Detection and Monitoring Systems (USACE project)
  - Using FEA to improve efficiency of CP systems
  - Developing novel sensor for monitoring CP system and coating condition
  - Reclamation conducting inquiry to O&M corrosionrelated issues- report at end of FY14
  - USBR seeking site for pilot test of USACE monitoring system



#### Use of Tablets for Field Work

- USBR working with USACE to employ MICA
- MICA- Mobile Information Collection Application
  - With one device collect:
    - GPS location
    - Photos, Video, Sketches
    - Field or Inspection Data
  - Eliminates paper forms and enables real-time updating
- Pilot Test for CP System Testing:
  - Mni Wiconi WTP, Pierre, SD
  - IC and GA system on >100 miles of pipe
- FY15 Tasks:
  - Expand MICA use to other departments across Reclamation
  - Develop database for long-term storage and analysis of data
    - Likely using USBR GIS Tessel site and DoDbased SDSFIE (with Steve Jalbert from PN)





#### **Use of Tablets for Field Work**



#### **Use of Tablets for Field Work**

#### Form for Rectifier Testing



MICA available on tablet and smartphone devices



Web-based Interface for Data Viewing

### **Upcoming Events**

#### Coatings and Corrosion School

- October 2014 in Denver
- Registration should be open in August
- Contact Allen Skaja for more info

#### Next Corrosion Webinar:

- Tentative: February 2015
- Topic: Coatings Field Inspection
- What do you want to hear about? Please suggest topics for future webinars!

### **TSC Corrosion & Coatings Staff:**



Corrosion
Roger Turcotte, Lee Sears, Jessica Torrey,
Daryl Little

Contact:
Jessica Torrey
jtorrey@usbr.gov
303-445-2376

#### Coatings

Rick Pepin, Dave Tordonato, Bobbi Jo Merten, Allen Skaja

Contact:
Allen Skaja
askaja@usbr.gov
303-445-2396



#### **Questions? Comments?**

#### De Sitter's "Law of Fives"

\$1 spent in getting the structure designed and built correctly is as effective as spending
\$5 when the structure has been constructed but corrosion has yet to start,
\$25 when corrosion has started at some points, and
\$125 when corrosion has become widespread.

Thank you to everyone who provided photos and information for this webinar!